Guidelines for Solving Problems of Particle Motion in Three Dimensions

- 1. Identify the problem:
 - a. Number of degrees of freedoms
 - b. Obvious constraints
 - c. Intuitive notion of how system moves
- 2. Choose a suitable coordinate system

(Cartesian: x, y, z; Plane polar: r, θ , Cylindrical: R, ϕ , z; Spherical: r, θ , ϕ ; etc.)

- a. Take advantage of system symmetry
- b. Take advantage of geometrical constraints
- 3. Find expressions for the components of the force in the chosen coordinate system:

Cartesian	Plane Polar	Cylindrical	Spherical
$F_x = \dots$	F_r	F_R	F_r
$F_y = \dots$	$F_{ heta}$	F_{ϕ}	F_{θ}
$F_z = \dots$		F_{z}	F_{ϕ}

Examples:

- For 3D isotropic harmonic oscillator (Cartesian): $F_x = -kx$; $F_y = -ky$; $F_z = -kz$.

- For gravity (Spherical): $F_r = -\frac{GMm}{r^2}$; $F_{\theta} = 0$; $F_{\phi} = 0$.

4. Write the component equations of Newton's 2^{nd} Law in the chosen coordinates:

Cartesian	Plane Polar	Cylindrical
$m\ddot{x} = F_x$	$m(\ddot{r}-r\dot{\theta}^2)=F_r$	$m(\ddot{R}-R\dot{\phi}^2)=F_R$
$m\ddot{y} = F_y$	$m(r\ddot{\theta} + 2\dot{r}\dot{\theta}) = F_{\theta}$	$m(R\ddot{\phi}+2\dot{R}\dot{\phi})=F_{\phi}$
$m\ddot{z} = F_z$		$m\ddot{z} = F_z$

Spherical

 $m(\ddot{r} - r\dot{\phi}\sin^2\theta - r\dot{\theta}^2) = F_r$ $m(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta) = F_{\theta}$ $m(r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi}\sin\theta + 2r\dot{\theta}\dot{\phi}\cos\theta) = F_{\phi}$

- 5. Make sure component equations are simplified as much as possible using any <u>constraints</u> for the motion of the system.
- 6. Check if force is conservative (i.e., check if $\nabla \times \vec{F} = 0$)

- 7. If possible, solve the component equations analytically. Otherwise, seek numerical solution.
 - a. If variables separate, treat each component equation as a 1D problem
 - b. If variables do not separate, attempt integration followed by substitution
- 8. If possible, find analytical expression for the particle path in space. Otherwise, obtain numerical plot of the path.
- 9. Compare your solution with original problem and make sure it makes sense.

Other useful approaches to obtain expressions for the velocity: (Equivalent to first integration of equations of motion)

- 1. Linear momentum theorem: $m\vec{v} m\vec{v}_0 = \int_{t_0}^t \vec{F} dt$ = Impulse
- 2. Work-energy theorem: $\frac{1}{2}mv^2 \frac{1}{2}mv_0^2 = \int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r}$ = Work by Net Force
- 3. Conservation of energy: $\frac{1}{2}mv^2 + V(\vec{r}) = E$ = Total Mechanical Energy